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ABSTRACT
This paper presents a novel deep architecture for weakly-supervised
temporal action localization that predicts temporal boundaries with
graph regularization. Our model not only generates segment-level
action responses but also propagates segment-level responses to
neighborhood in a form of graph Laplacian regularization. Specifi-
cally, our approach consists of two sub-modules; a class activation
module to estimate the action score map over time through the
action classifiers, and a graph regularization module to refine the
estimated action score map by solving a quadratic programming
problem with the predicted segment-level semantic affinities. Since
these two modules are integrated with fully differentiable layers, the
proposed network can be jointly trained in an end-to-end manner.
Experimental results on Thumos14 and ActivityNet1.2 demonstrate
that the proposed method provides outstanding performances in
weakly-supervised temporal action localization.

Index Terms— weakly-supervised temporal action localization,
graph Laplacian regularization, semantic affinity

1. INTRODUCTION
Temporal action localization in untrimmed videos is essential for
comprehensive video understanding tasks including event detection
[1], video summarization [2], and visual question answering [3].
Over the past few years, impressive improvement has been made in
a fully supervised setting [4, 5, 6, 7, 8], requiring the full annotation
of the temporal boundaries as ground-truth labels. However, manu-
ally annotating temporal boundaries for each action instance is very
expensive and time-consuming. Furthermore, the ambiguous tem-
poral extent of actions induces subjective and imprecise annotations,
making supervised learning less feasible.

To alleviate these issues, several recent methods [9, 10, 11, 12]
have been proposed to use only video-level action labels that are
much easier to collect compared to the temporal boundary anno-
tations. Specifically, given action class labels of videos, they pass
several randomly sampled segments through an action classifier and
then average the action scores to yield a video-level class prediction.
As a pioneering work, UntrimmedNet [9] offered a way to deal with
insufficient training data by detecting automatically discriminative
parts in the temporal domain to minimize the video action classifica-
tion error. Similarly, Hide-and-seek [13] carried out temporal action
localization by randomly hiding several frames from video and at-
tending on salient regions in remaining frames. More recently, some
approaches extend this classification framework by additionally em-
ploying attention module [10], supervisions from contrastive bound-
aries [11], or multiple instances [12]. Nguyen et al. [10] proposed to
identify a sparse subset of key segments using an attention module
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Fig. 1. Illustration of our weakly-supervised temporal action lo-
calization: We use only video-level action annotations to learn our
framework during training. In testing phase, we classify action
classes and localize temporal boundaries of action instances.

and fuse the key segments through adaptive temporal pooling. Shou
et al. [11] introduced the Outer-Inner-Contrastive (OIC) loss to au-
tomatically adjust boundaries of actions and background by maxi-
mizing the discrepancy between inner boundary and outer one. Paul
et al. [12] proposed the co-activity similarity loss which is based on
the motivation that a pair of videos having at least one activity cate-
gory in common should have similar features in the temporal regions
which correspond to that activity. Although aforementioned tech-
niques provide promising results without temporal annotations, they
have two major weaknesses in their formulation; 1) while features
are sufficiently trained to represent the entire video, they have dif-
ficulties on localizing fine-grained activities since only video-level
supervisions are provided. 2) Moreover, action score map is com-
puted segment-by-segment without considering temporal consisten-
cies, making it difficult to perform the precise temporal localization.

To overcome these limitations, we propose a novel deep ar-
chitecture that imposes temporal smoothness by leveraging graph
Laplacian regularization with learned semantic temporal affinities.
The key intuition is that a pair of video segments corresponding
same action classes should have strong semantic affinity in a graph
with segments as a nodes. Specifically, we formulate two sub-
networks: class activation module to extract a class activation score
map and graph regularization module to construct a graph to gen-
erate class-agnostic affinity matrix by linking semantic neighbor
segments that are close in the affinity space. Based on class-agnostic
affinity matrix, the class-specific activation scores are propagated
to semantically similar segments by using the graph Laplacian reg-
ularization techniques. Furthermore, we propose an affinity loss
that leverages a pseudo semantic affinity matrix label from the class
activation score map. The networks are jointly learned with the clas-
sification loss using the video-level annotation and the affinity loss.
We employ the two-stream architecture, i.e., RGB and flow streams,
to boost the localization performance by considering the spatial and
motion information both. In the testing phase, we combine the final
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Fig. 2. Illustration of the proposed network for weakly-supervised temporal action localization. It consists of two sub-modules including
the class activation module and the graph regularization module. The class activation module estimates a class-specific score map which
represents probability for each class with respect to each video segment. The graph regularization module generates a class-agnostic affinity
matrix and propagates the score by the graph Laplacian regularization with embedded semantic features.

class score maps from each identical network. Experimental results
demonstrate our model outperforms previous approaches on several
benchmarks.

2. PROPOSED METHOD
2.1. Problem Formulation

Let us define an untrimmed video V composed of a sequence of N
segments as v1:N = {v1, v2, ..., vN}, where one segment vn con-
tains several consecutive frames. The objective of temporal action
localization is to discover the start time tcs and end time tce with one
confidence score per action label c ∈ {1, ..., C}, where C is the to-
tal number of action labels. The overall architecture of our weakly-
supervised action localization approach is illustrated in Fig. 2.

2.2. Network Architecture
2.2.1. Class Activation Module

The class activation map indicates the discriminative segment fea-
tures to identify its action class. Based on the idea in [14], the class
activation module learns the weights using video-level labels with
global average pooling which outputs the temporal average of the
feature map from the last fully-connected (FC) layer. Then, the class
activation map is computed as a weighted sum of the feature maps
of the previous FC layer.

Specifically, the class activation module consists of two FC lay-
ers which have 512 and C channels, respectively. We add a ReLU
function between the two FC layers. Finally, we obtain the class ac-
tivation score sct for a given class c from the output of the first FC
layer ffc1,t of t-th segment, which is given by

sct = σ(
∑
k

wc(k)ffc1,t(k)), (1)

where wc(k) denotes k-th element of the parameter w in the last
fully-connected layer for the class c and σ(·) is the sigmoid func-
tion to obtain class scores between 0 and 1. Although the scores
for each segment are sub-optimal to represent the precise temporal
boundaries, semantic affinities between segments are not considered
in generating class activation scores.

2.2.2. Graph Regularization Module

Embedding feature affinity. Since the class activation score map
is not optimal to identify the time intervals, we employ graph Lapla-

cian regularization techniques [15] to refine the class activation score
map by considering semantic affinities between segments. To con-
sider semantic affinities between segments, we embed the features
to a latent space to identify the correlations of feature representa-
tions from each segment instead of using the input feature itself. The
affinity feature space represents the semantic affinities between seg-
ments. While preserving the temporal correspondences between the
features, a set of the embedded feature e is obtained through a feed-
forward such that,

e = F(f ;w), (2)

where w represent model parameters to project input features into
feature affinity space and F is feature embedding network. The fea-
ture embedding network is composed of three convolution layers and
ReLU layers after every convolution layers with batch normaliza-
tion. The input feature is projected to the affinity feature space with
lower dimensions.
Generating affinity matrix. To compute the Laplacian matrix
L, the embedded feature e is fed into the graph construction layer.
Given an appropriate neighborhood graph G with N vertices, graph
Laplacian regularization techniques assume that the optimal class
activation scores connected to high affinity are smooth with respect
to G. We first compute the adjacency matrix A ∈ RT×T of graph G
which is used as the affinity matrix in our approach. As defined in
[15], the edge weight wij of A between two embedded features ei

and ej is computed as,

wij = exp(−||ei − ej ||2/2ε2), (3)

where ε is a constant to regulate sensitivity for the distance between
features. The degree matrix D is a diagonal matrix whose i-th di-
agonal entry is

∑N
j=1 wij , and then the graph Laplacian matrix L is

given by L = D−A, which includes the graph Laplacian regular-
izer.
Solving graph regularization. To discover the optimal class ac-
tivation score map {ŝ∗c}Kc=1 ∈ RN with respect to the Laplacian
matrix L, a maximum a posteriori problem can be formulated as fol-
lows:

ŝ∗c = argmin
ŝc

(||sc − ŝc||22 + µ · ŝcTLŝc), (4)

where the prior term is a `2-norm computing the difference between
the score vector sc and the refined score vector ŝc for the class c,



Active

4

연구개발목표및내용
Weakly-supervised Temporal Localization
• Overall Proposed Algorithm

Class Activation Score
“Throw Discus”

Positive 1
Negative 0
Not used

“Throw Discus” “Diving” “Long Jump” Segments

Neutral

𝜏ℎ

𝜏𝑙

Fig. 3. A toy example of generating affinity matrix labels. Given a
class activation score map for the particular class (”Throw Discus”),
pairs of segments sampled according to the predefined thresholds.
For the pairs which have same class are assigned 1, and 0 otherwise.
If there is any segment of the pair that has neutral score, the pair is
not assigned any labels.

and the posterior term is a graph Laplacian regularizer with hyper-
parameter µ. We reformulate the above optimization as an inverse
system problem of the linear equation such that

s∗c = (I+ µL)−1sc, (5)

where I is an identical matrix. The solution of (5) is obtained by
inference layer which is fully differentiable in a similar way to [16],
thus the graph regularization module can be learned in an end-to-end
manner. The output of the inference layer is leveraged to refine the
class activation score map. Since the Laplacian matrix L is class-
agnostic, class activation scores are refined solely with their seman-
tic affinity.
2.3. Loss Functions

To optimize the proposed network, we define the loss function as the
sum of two loss functions:

Ltotal = Laff + λ · Lcls, (6)

where Laff is the affinity loss on the affinity matrix A and Lcls de-
notes the classification loss using only video-level labels. And λ is a
hyper-parameter to scale two loss functions.

To propagate local responses via affinity matrix, we carefully
consider the class activation score map as another weak supervision
in affinity loss. Specifically, we build the active set of segments used
in training whose class activation scores are higher or lower than
threshold τh and τl corresponding to the ground truth class labels as
illustrated in Fig. 3. For each segment in the active set, we temporar-
ily assign class labels zt based on the class activation score map such
that,

zt = argmax
c

sct . (7)

Then, we define a pseudo affinity label A∗ij for the active pair of
segments vi and vj as follows:

A∗ij =

{
1 if zi = zj

0 otherwise
. (8)

If any segments of pair not belong to active, we do not assign la-
bels for the affinity loss. The affinity loss Laff is based on the mean
squared error between the affinity matrix A and pseudo affinity label
A∗ denoted by:

Laff =
1

N

N∑
i=1

1

|N (i)|
∑

j∈N (i)

||Aij −A∗ij ||2, (9)

whereN (i) is the semantic neighborhood for vi.

In addition, the refined class activation score map s∗c of sam-
pled segments is aggregated to generate the video-level score vector
ŷc. To learn the weights of two sub-modules, the classification loss
function Lcls employs the standard multi-label cross-entropy loss be-
tween the ground truth video labels yc and the predicted score vector
ŷc such that,

Lcls = −
K∑

c=1

[yc log(ŷc) + (1− yc) log(1− ŷc)]. (10)

Note that the derivative of the classification loss is back-propagated
into the both class activation and graph regularization module, but
the derivative of the affinity loss can be back-propagated only into
the graph regularization module.

2.4. Testing Phase

We employ the two-stream model which is widely used in action
recognition and localization areas to get boosted performance [17,
18]. Our networks illustrated in Fig. 2 are trained for the RGB and
the optical flow stream with the equivalent settings, and the outputs
of each stream are combined to perform the temporal action local-
ization task.

Concretely, to generate temporal proposals including a set of
time intervals with respect to each testing video, we compute refined
class activation score maps for the RGB and flow stream, represented
by ŝct,RGB and ŝct,FLOW. Similar to [10], we extract temporal segments
by applying thresholding strategy to each stream. After that, we inte-
grate the proposals whose overlapping duration is above pre-defined
threshold. We then assign a score for each integrated proposal cor-
responding to each class c as follows:

te∑
t=ts

α · ŝct,RGB + (1− α) · ŝct,FLOW

te − ts + 1
, (11)

where α is a parameter to balance scores from two modalities. Fi-
nally, we apply non-maximum suppression to all proposals with in-
tersection over union (IoU) higher than 0.5.

3. EXPERIMENTAL RESULTS
3.1. Implementation and Training Details

We use two-stream I3D models [17] trained on the Kinetics dataset
[20] to extract feature for each video segment. We randomly sample
400 segments in the training set for data augmentation and uniformly
sample at the same intervals in the test set. For the RGB stream,
the videos are rescaled preserving aspect ratio so that the smallest
dimension of a frame is 256 pixels. Then, we perform the random
crop of size 224× 224 for the training data and the center crop with
same size for the test data. For the flow stream, we apply the TV-L1
optical flow algorithm [21]. The inputs of the I3D models are the
sets of 16 (RGB or flow) frames sampled at 10 frames per second.

We train our model using the Adam optimizer [22] with PyTorch
[23]. The learning rate for the class activation module is set to 10−4

until the end of training. For the graph regularization module, the
learning rate is set to 0 for first 1, 000 iterations and to 10−4 after
that. At testing time, we collect class activation scores whose video-
level score is over 0.1, and extract temporal proposals from each
score. We set the balancing parameter α to 0.5.

3.2. Experimental Settings

For the quantitative evaluation, we used mean average precision
(mAP) metric according to different IoU threshold values. We eval-
uated the proposed method on two commonly used action localiza-
tion benchmark datasets, THUMOS14 [19] and ActivityNet1.2 [24].
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Fig. 4. Localization result for qualitative analysis in the class “Pole Vault” on THUMOS14 dataset [19]. The black arrow shows the successive
cases and the red arrow shows failure case due to the occlusion.

Table 1. Localization performance comparisons over the THU-
MOS14 dataset [19]. w/o GR, FE denotes a result using class ac-
tivation module only and w/o FE denotes a result without embedded
feature.

Supervision Methods AP@IoU
0.3 0.4 0.5 0.7

Full
Yuan et al. [6] 36.5 27.8 17.8 -
Gao et al. [25] 50.1 41.3 31.0 9.9
Zhao et al. [8] 51.9 41.0 29.8 10.7

Weak

Wang et al. [9] 28.3 21.1 13.7 -
Nguyen et al. [10] 35.5 25.8 16.9 4.3
Shou et al. [11] 35.8 29.0 21.2 5.8
Paul et al. [12] 40.1 31.1 22.8 7.6
Ours w/o GR, FE 25.2 17.8 9.6 2.7
Ours w/o FE 35.4 26.1 16.7 4.2
Ours 40.2 32.2 21.7 9.2

Specifically, the THUMOS14 dataset has a subset of 200 and 213
untrimmed videos for each the validation and the test set with 20 ac-
tion classes. We trained our network using the validation set without
any temporal annotations and evaluate on the test set with temporal
annotations. For the ActivityNet1.2 dataset, we used the training
set to learn our model and evaluated on the validation set with 100
classes.

We also conducted ablation studies to investigate the contribu-
tion of the feature embedding network and the graph Laplacian reg-
ularization on the THUMOS14 dataset. In our experimental results,
‘GR’ means graph Laplacian regularization and ‘FE’ means feature
embedding network.

3.3. Results on THUMOS14

Table 1 shows the comparison with state-of-the-art methods for tem-
poral action localization on THUMOS14. We included only a few
of the fully-supervised and weakly-supervised approaches in the ta-
ble. Our algorithm outperforms or shows competitive performance
on weakly-supervised learning. Despite the difference in levels of
supervision, our algorithm shows competitive performance to recent
fully-supervised methods.

We also conducted ablation studies for the graph regularization
module and the semantic affinity module to investigate the contribu-
tion of components in our model. We observed that the graph reg-
ularization module with the feature embedding network sufficiently
contributes to the performance improvement. Fig. 4 shows quali-
tative results for the class “Pole Vault” on the THUMOS14 dataset.
Each row represents score signals of two baselines, detection results

Table 2. Localization performance comparisons over the Activi-
tyNet1.2 dataset [24].

Supervision Methods AP@IoU
0.3 0.4 0.5 0.7

Full Zhao et al. [8] - - 41.3 30.4

Weak

Wang et al. [9] - - 7.4 3.9
Shou et al. [11] - - 27.3 17.5
Paul et al. [12] 45.5 41.6 37.0 14.6
Ours 45.2 41.8 33.7 18.4

of our whole networks, and ground truth for example video, respec-
tively. In detection results, we can observe that our model effectively
capture the temporal boundaries despite of many action instances.
The results of the two baselines presents considering affinity can re-
fine the score signal, and it also confirmed that embedding the feature
to affinity space thoroughly improves effect of regularization.

3.4. Results on ActivityNet1.2

Moreover, we presented the evaluations of our model on ActivityNet
1.2 in Table 2. We compared our methods with other state-of-the-art
fully-supervised and weakly-supervised temporal action localization
methods. The results show our methods obtain state-of-the-art per-
formance at IoU thresholds 0.4 and 0.7 with 41.8 and 18.4 scores,
respectively. Also, it even shows competitive performance for other
thresholds.

4. CONCLUSION

In this paper, we presented the novel learning framework through
CNNs for weakly-supervised temporal action localization in untrim-
med videos. Two sub-modules including class activation and graph
regularization have been proposed to estimate discontinuity pre-
served localization results with the learned embedding features.
Moreover, the proposed affinity loss and classification loss are used
to jointly optimize the networks to effectively embed the features
into affinity space. We validated the effectiveness of the proposed
method on the THUMOS14 and ActivityNet1.2 benchmark datasets.
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