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ABSTRACT

In this paper, we address a problem of generating a virtual
right-view from a single left image. Traditional methods usu-
ally have separate stages, i.e, depth (or disparity) estimation
for a given single image and depth image-based rendering
(DIBR), and require ground-truth depth as supervision. In
contrast, using spatial transformer module, our method trains
a deep convolutional neural network (CNN) directly on stereo
image pairs captured in outdoor environments. This makes it
possible to exploit orders of magnitude data, in where high-
quality depth recording is challenging, and significantly in-
creases performance. To capture large displacements between
images, we further propose multi-scale deep architecture that
works from coarse to fine. The idea is that the displacements
are always less than a few pixels at each scale. Experimental
results demonstrate the effectiveness of the proposed method
over state-of-the-art approaches both qualitatively and quan-
titatively.

Index Terms— Automatic 2D-to-3D conversion, view
extrapolation, multi-scale deep neural network, depth image-
based rendering.

1. INTRODUCTION

Estimating 3D structure from images is a fundamental task
in image processing, computer vision and graphics. In this
work, we aim to solve the related problem of automatic 2D-
to-3D conversion, where the goal is to synthesize a virtual
right-view by warping a given single left-view. It can be used
for a variety of applications such as 3D-TV, virtual reality,
autonomous vehicle [1], and video stabilization [2]. The ma-
jority of existing techniques for 2D-to-3D conversion consists
of two steps: single image depth estimation and depth-based
image rendering (DIBR) in order to form a stereo pair. In the
following, we briefly review these steps separately.

The problem of 2D-to-3D conversion is strongly related to
the problem of predicting depth from a single image. In recent
years, machine learning approaches have greatly advanced the
accuracy of depth prediction problem. Saxena et al. [3] mod-
eled monocular cues based on the MRF whose edges encode
a simple smoothness assumption between neighboring super-
pixels. Karsch et al. [4] devised the depth transfer algorithm
using retrieved similar images in the training set. Their re-

trieval is performed using the GIST descriptor at a whole im-
age level, followed by dense scene alignment [5]. A global
optimization step is then utilized to combine depth from the
aligned images. Konrad et al. [6] argued that dense scene
alignment of [4] is computationally expensive and does not
necessarily improve the quality of depth estimation. Instead,
they directly fused the retrieved depth by computing a me-
dian value for each pixel. More recent methods have used
convolutional neural networks (CNN) and Kinect data [7] for
supervised training. Eigen et al. applied the CNNs in multi-
ple stages to generate features and refine depth prediction to
higher resolution [8]. In [9], relative depth annotations rather
than metric depth were used to improve the performance in
unconstrained settings. Laina et al. [10] devised a fast up-
projection layer and combined it with the deep residual learn-
ing [11]. These methods have achieved state-of-the-art perfor-
mance on several benchmarks, but require large-scale ground-
truth depth maps for training. Recording high-quality depth
maps in a range of environments (especially for outdoor) is
very difficult.

The DIBR is one of the most important techniques to syn-
thesize virtual view at different viewpoints using a 3D warp-
ing process. When a virtual view is located between two
real cameras, i.e., view interpolation, most occluded regions
can be handled by combining image and depth from multiple
views. In automatic 2D-to-3D conversion, however, the prob-
lem becomes even more complicated since the view is extrap-
olated from a single view. Early methods used a Gaussian fil-
ter to smooth the depth image [12,13]. The main drawback of
this is that it smooths depth discontinuities, introducing geo-
metric distortions. Azzari et al. [14] filled the occluded region
using non-local means of similar patches. Recently, Choi et
al. used the random walker segmentation for extrapolating a
virtual view [15].

In this paper, we combine the single image depth estima-
tion and DIBR process into a unified deep CNN framework.
Using a spatial transformer module [17], the problem of 2D-
to-3D conversion is reformulated as an image reconstruction
problem. This allows our model to be trained end-to-end us-
ing stereo image pairs only (without ground-truth disparity
as supervision). We further propose multi-scale deep archi-
tecture to capture large displacements between stereo images.
The disparity map estimated by the network is optimized only
to synthesize a good virtual right-view, performing occlusion
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Fig. 1. The architecture of the proposed multi-scale CNNs. Each scale of network consists of a pair of encoder-decoder network.
Encoder parts require both of the resized left view and the outputs of previous scale network (including disparity and virtual
right view), except the coarsest scale.

filling implicitly. Note that our method is highly related to
recent work of Deep3D [16] that integrates the DIBR process
into the CNN using an probabilistic disparity representation.
But, our approach uses a multi-scale design to directly rep-
resent the disparity maps. We will show that the proposed
method gives much better results than the Deep3D [16].

2. PROPOSED METHOD

A typical 2D-to-3D conversion process consists of two steps:
estimating a depth (or disparity) map from the given left-
view I l and rendering the virtual right-view Ir using a depth
image-based rendering algorithm. We combine these two
steps into a unified deep CNN framework, which can be
trained by standard back-propagation. Our approach uses the
spatial transformer module [17] in a coarse-to-fine manner,
compensating large displacements between left-right views.
Note that our approach does not require disparity maps as
supervision for training. Next, we describe the network and
training procedure in detail.

2.1. Spatial Transformer and 2D-to-3D Conversion

We propose to use the spatial transformer module [17] in the
CNNs for automatic 2D-to-3D conversion. It was originally
introduced by Jaderberg et al. [17] and aimed to find an affine
transformation for spatially invariant classification. In con-
trast, our transformation is defined by per-pixel disparity map.
The task is then to estimate the best disparity map dr relating
a right-view Ir with a given left-view I l. The disparity map
is assumed to be pixel-wise dense, allowing displacing each
pixel of I l to a new position aligned to Ir. The resulting pixel
displacement requires interpolation back onto a regular grid.
We use bilinear interpolation B{·, d}, and express the synthe-
sized right-view as:

Ir = B{I l, dr}, (1)

i.e., through backward warping. Our formulation of (1) is
fully differentiable with respect to dr, and therefore allows
back-propagation of the error.

2.2. Inference

We adopt a multi-scale design to represent the disparity dr

from single left-view I l. Let {U0, . . . , UK} denote a set of
trained CNNs with downsampling factors {2K , . . . , 20}. In
this work, we use 3-scale architecture (K = 2) and the corre-
sponding schematic of design is illustrated in Fig. 1.

Since our objective is to synthesize Ir from single I l, each
network has slightly different input configurations. The CNN
U0 takes I l0 only as input, and computes the disparity dr0 and
Ir0 as follows:

dr0 = U0(I
l
0), Ir0 = B{I l0, dr0}. (2)

Whereas the others U1, U2 use the estimated disparity map
and synthesized view from the previous scale:

drk = Uk(I
l
k, u(I

r
k−1), u(d

r
k−1)),

Irk = B{I lk, drk},
(3)

where u(·) is a upsampling operator that increases the spatial
resolution (×2). That is, we upsample the resulting disparity
u(drk−1) and right-view u(Irk−1), and pass these to the next
scale Uk along with I lk. Note that at each scale, we synthesize
right-view Irk using (1). The problem in finer scale (U1, U2)
becomes similar to stereo matching since the network takes
the left and synthesized right views as inputs. It makes the
problem much easier than using I lk only.

2.3. Network Architecture

Each network Uk has a fully convolutional encoder-decoder
architecture [18] that takes input of arbitrary size and pro-
duces correspondingly-sized output. The encoder consists of



Fig. 2. Comparison between single- and multi-scale networks. Multi-scale network outperforms the single-scale network,
especially foreground regions (large disparity values). For the visibility, highlighted boxes are enlarged in the last column.

the repeated application of three 3 × 3 convolutions and rec-
tified linear unit (ReLU), followed by (stride 2) max-pooling.
For the extra inputs (u(drk−1), u(I

r
k−1)), we first concatenate

them and adapt the late fusion strategy [19] using the same
encoder architecture (see Fig. 1). The decoder part progres-
sively enlarges the spatial resolution of CNN features through
a sequence of deconvolution (a factor of 2) and convolution
layers1.

There is a trade-off between localization accuracy of the
output and the use of global context. The encoder-decoder
architecture requires a series of convolution and max-pooling
layers to robustly estimate the disparity map drk. The subtle
details of the disparity map, however, are lost during these
process. Inspired by [20], we add skip connections between
two corresponding convolution and deconvolution layers, as
shown in Fig. 1. The feature maps shuttled by skip connec-
tions carry much details, which help the network to estimate
accurate disparity maps.

2.4. Training

We train each of the CNNs {U0, . . . , UK=2} independently
and sequentially to synthesize the right-view Irk . Given a col-
lection of M training stereo paris, the mean absolute error
(MAE) criterion is applied to every scale of networks. Hence,
the loss function is defined as follows

Lk =
1

M

M∑
p=1

1

ckwkhk

∥∥∥Ir,(p)k − r
(p)
k

∥∥∥
1
, (4)

where rk indicates the ground-truth right view downsampled
at scale k. The loss at each scale is normalized by the number
of channels ck, width wk, and height hk. We use the stan-
dard stochastic gradient descent (SGD) to minimize (4). The
derivative for the back-propagation is obtained as follows:

∂Lk

∂I
r,(p)
k

∝ sgn
(
Ir,(p)p − r

(p)
k

)
, (5)

1We add the batch normalization [18] after every convolution layers in the
decoder

Table 1. Average PSNR and SSIM on 1,578 test images from
KITTI dataset [23].

Deep3D [16] Ours (K = 0) Ours (K = 2)

PSNR 30.18 29.23 31.85
SSIM 0.8677 0.8569 0.9038

where sgn(·) denotes the signum function. Each network
Uk uses the previous scale Uk−1 as initialization, except U0.
The encoder and decoder parts of U0 are initialized using pre-
trained VGG-16 model [21] and normal distribution with zero
mean, respectively.

3. EXPERIMENTS

3.1. Implementation Details

We implement the proposed method using the VLFeat Mat-
ConvNet2 [22]. We modify the BilinearSampler layer in Mat-
ConvNet [22] to realize the spatial transformer module [17].
The source codes for training and testing will be made pub-
licly available. Training is done on a standard desktop with
12GB NVIDIA Titan GPU using 35 thousand stereo pairs
from the KITTI dataset [23]. The training images are resized
to 784× 2563 for the efficient training. Data augmentation is
performed on the fly, applying random transform to the train-
ing data. It includes in-plane rotation, translation, flip, and
brightness shift. We use a learning rate of 10−4 for the first
10 epoch and decrease it to 10−6 until the networks converge
(40 epoch). For each scale, the batch sizes are set to 32, 16
and 8, respectively. In all cases, the momentum and weight
decay parameters are set to 0.9 and 0.0005, respectively.

We compare the proposed method to the Deep3D [16]
model, which also does not require the ground-truth dispar-
ity maps for training. Since the Deep3D [16] is not trained on

2http://www.vlfeat.org/matconvnet/
3The input sizes of each scale are 196× 64, 392× 128, and 784× 256

respectively.



Fig. 3. Qualitative results for 2D-to-3D conversion: (From left to right) ground-truth right view, Deep3D [16], and ours. For
accurate comparison, highlighted boxes are stacked in the last column.

Fig. 4. Disparity maps and virtual views from Deep3D [16]
and ours.

the KITTI dataset [23], we retrain it using the source code4

provided by the authors.

3.2. Results on KITTI

We evaluate the proposed method on 1, 578 KITTI test im-
ages [23]. Figure 2 demonstrates the effectiveness of our
multi-scale architecture for auto-matric 2D-to-3D conversion.
Both the single- and the multi-scale networks can synthesize
the background regions correctly (the corresponding dispar-
ity is relatively small). However, the former has a difficulty in
reconstructing the foreground object which has the large dis-
parity value. The proposed multi-scale network successfully
synthesizes the foreground object and thin structures (the blue
and red boxes in Fig. 2).

Fig. 3 shows the visual comparison of our method with
the Deep3D [16]. Since the Deep3D [16] synthesize the vir-
tual view by calculating weighed averages of shifted input
left-view, the resulting image becomes smooth. In contrast,
the proposed method samples the textures from the input
left-view directly, and shows more natural results. The es-

4https://github.com/piiswrong/deep3d

Fig. 5. Stereo Anaglyph generated by the Deep3D [16] and
the proposed method.

timated disparity maps both of the Deep3D and ours have
incorrect values in homogenous regions (Fig. 4). This is be-
cause both methods optimize the CNNs to estimate the good
virtual views, not disparity maps. However, the proposed
method still visually plausible disparity maps. We measure
peak signal-to-noise ratio (PSNR) and SSIM as quantitative
comparison on the KITTI dataset [23]. The results are sum-
marized in Table 1. We observe that the proposed method is
more accurate than the Deep3D [16] in both metrics. Finally,
in Fig. 4 we show stereo anaglyph generated by the Deep3D
and ours, which are constructed from the input left view and
virtual right view.

4. CONCLUSION

In this paper, we propose multi-scale convolutional neural
networks for automatic 2D-to-3D conversion. Different from
existing methods, we combine the single image depth estima-
tion and DIBR process into a unified deep CNN framework.
Using the spatial transform module, we train our model end-
to-end on a large-scale stereo image dataset. We also pro-
posed multi-scale deep architecture to capture large displace-
ments between stereo images. Intensive experiments demon-
strate the superiority of the proposed method over state-of-
the-art methods both qualitatively and quantitatively.
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