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Abstract

Traditional techniques for emotion recognition have fo-

cused on the facial expression analysis only, thus provid-

ing limited ability to encode context that comprehensively

represents the emotional responses. We present deep net-

works for context-aware emotion recognition, called CAER-

Net, that exploit not only human facial expression but also

context information in a joint and boosting manner. The

key idea is to hide human faces in a visual scene and seek

other contexts based on an attention mechanism. Our net-

works consist of two sub-networks, including two-stream

encoding networks to separately extract the features of

face and context regions, and adaptive fusion networks to

fuse such features in an adaptive fashion. We also intro-

duce a novel benchmark for context-aware emotion recog-

nition, called CAER, that is more appropriate than exist-

ing benchmarks both qualitatively and quantitatively. On

several benchmarks, CAER-Net proves the effect of con-

text for emotion recognition. Our dataset is available at

http://caer-dataset.github.io.

1. Introduction

Recognizing human emotions from visual contents has

attracted significant attention in numerous computer vision

applications such as health care and human-computer inter-

action systems [1, 2, 3].

Previous researches for emotion recognition based on

handcrafted features [4, 5] or deep networks [6, 7, 8] have

mainly focused on the perception of the facial expression,

based on the assumption that facial images are one of the

most discriminative features of emotional responses. In

this regard, the most widely used datasets, such as the

AFEW [9] and FER2013 [10], only provide the cropped

and aligned facial images. However, those conventional
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Figure 1. Intuition of CAER-Net: for untrimmed videos as in (a),

conventional methods that leverage the facial regions only as in (b)

often fail to recognize emotion. Unlike these methods, CAER-Net

focuses on both face and attentive context regions as in (c).

methods with the facial image dataset frequently fail to pro-

vide satisfactory performance when the emotional signals in

the faces are indistinguishable and ambiguous. Meanwhile,

people recognize the emotion of others from not only their

faces but also surrounding contexts, such as action, inter-

action with others, and place [11, 12]. Given untrimmed

videos as in Fig. 1(a), could we catch how a woman feels

solely from her facial expression as in Fig. 1(b)? It is am-

biguous to estimate the emotion only with cropped facial

videos. However, we could easily guess the emotion as

“surprise” with her facial expression and contexts that an

another woman comes close to her as shown in Fig. 1(c).

Nevertheless, such contexts have been rarely considered

in most existing emotion recognition methods and bench-

marks.

Some methods [13, 14] have shown that emotion recog-

nition performance can be significantly boosted by consid-

ering context information such as gesture and place [13, 14].

In addition, in visual sentimental analysis [15, 16] that

recognizes the sentiment of an image, similar to emotion

recognition but not tailored to humans, the holistic visual

appearance was used to encode such contexts. However,

these approaches are not practical for extracting the salient

context information from visual contents. Moreover, large-
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scale emotion recognition datasets, including various con-

text information close in real environments, are absence.

To overcome these limitations, we present a novel frame-

work, called Context-Aware Emotion Recogntion Networks

(CAER-Net), to recognize human emotion from images and

videos by exploiting not only human facial expression but

also scene contexts in a joint and boosting manner, instead

of only focusing on the facial regions as in most existing

methods [4, 5, 6, 7, 8]. The networks are designed in a two-

stream architecture, including two feature encoding stream;

face encoding and context encoding streams. Our key in-

gradient is to seek other relevant contexts by hiding human

faces based on an attention mechanism, which enables the

networks to reduce an ambiguity and improve an accuracy

in emotion recognition. The face and context features are

then fused to predict the emotion class in an adaptive fusion

network by inferring an optimal fusion weight among the

two-stream features.

In addition, we build a novel database, called Context-

Aware Emotion Recognition (CAER), by collecting a large

amount of video clips from TV shows and annotating the

ground-truth emotion category. Experimental results show

that CAER-Net outperforms baseline networks for context-

aware emotion recognition on several benchmarks, includ-

ing AFEW [9] and our CAER dataset.

2. Related Work

Emotion recognition approaches. Most approaches to

recognize human emotion have focused on facial expres-

sion analysis [4, 5, 6, 7, 8]. Some methods are based on the

facial action coding system [17, 18], where a set of local-

ized movements of the face is used to encode facial expres-

sion. Compared to conventional methods that have relied

on handcrafted features and shallow classifiers [4, 5], re-

cent deep convolutional neural networks (CNNs) based ap-

proaches have made significant progress [6]. Various tech-

niques to capture temporal dynamics in videos have also

been proposed making connections across the time using re-

current neural networks (RNNs) or deep 3D-CNNs [19, 20].

However, most works have been relied on human face anal-

ysis, and thus they have limited ability to exploit context

information for emotion recognition in the wild.

To solve these limitations, some approaches using other

visual clues have been proposed [21, 22, 13, 14]. Nico-

laou et al. [21] used the location of shoulders and Schindler

et al. [22] used the body pose to recognize six emotion cat-

egories under controlled conditions. Chen et al. [13] de-

tected events, objects, and scenes using pre-learned CNNs

and fused each score with context fusion. In [14], man-

ually annotated body bounding boxes and holistic images

were leveraged. However, [14] have a limited ability to en-

code dynamic signals (i.e., video) to estimate the emotion.

Moreover, the aforementioned methods are a lack of prac-

tical solutions to extract the sailent context information and

exploit it to context-aware emotion recognition.

Emotion recognition datasets. Most of the datasets that

focus on detecting occurrence of expressions, such as

CK+ [23] and MMI [24], have been taken in lab-controlled

environments. Recently, datasets recorded in the wild con-

dition for including naturalistic emotion states [9, 25, 26]

have attracted much attention. AFEW benchmark [9] of the

EMOTIW challenge [27] provides video frames extracted

from movies and TV shows, while SFEW database [25] has

been built as a static subset of the AFEW. FER-Wild [26]

database contains 24,000 images that are obtained by query-

ing emotion-related terms from search engines. MS-COCO

database [28] has been recently annotated with object at-

tributes, including some emotion categories for human, but

the attributes are not intended to be exhaustive for emotion

recognition, and not all people are annotated with emotion

attributes. Some studies [29, 30] built the database con-

sisting of a spontaneous subset acquired under a restrictive

setting to establish the relationship between emotion and

body posture. EMOTIC database [14] has been introduced

providing the manually annotated body regions which con-

tains emotional state. Although these datasets investigate

a different aspect of emotion recognition with contexts, a

large-scale dataset for context-aware emotion recognition is

absence that contains various context information.

Attention inference. Since deep CNNs have achieved a

great success in many computer vision areas [31, 32, 33],

numerous attention inference models [34, 35] have been

investigated to identify discriminative regions where the

networks attend, by mining discriminative regions [36],

implicitly analyzing the higher-layer activation maps [34,

35], and designing different architecture of attention mod-

ules [37, 38]. Although the attention produced by these

conventional methods could be used as a prior for various

tasks, it only covers most discriminative regions of the ob-

ject, and thus frequently fails to capture other discriminative

parts that can help performance improvement.

Most related methods to our work discover attentive ar-

eas for visual sentiment recognition [16, 39]. Although

those produce the emotion sentiment map using deep

CNNs, it only focuses on image-level sentiment analysis,

not human-centric emotion like us.

3. Proposed Method

3.1. Motivation and Overview

In this section, we describe a simple yet effective frame-

work for context-aware emotion recognition in images and

videos that exploits the facial expression and context in-

formation in a boosting and synergistic manner. A sim-

ple solution is to use the holistic visual appearance similar
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Figure 2. Network configuration of CAER-Net, consisting of two-stream encoding networks and adaptive fusion networks.

to [14, 13], but such a model cannot encode salient contex-

tual regions well. Based on the intuition that emotions can

be recognized by understanding the context components of

scene, as well as facial expression together, we present an

attention inference module that estimates the context infor-

mation in images and videos. By hiding the facial regions

in inputs and seeking the attention regions, our networks lo-

calize more discriminative context regions that are used to

improve emotion recognition accuracy in a context-aware

manner.

Concretely, let us denote an image and a video that con-

sists of a sequence of T images as I and V = {I1, . . . , IT },

respectively. Our objective is to infer the discrete emotion

label y among K emotion labels {y1, . . . , yK} of the image

I or video clip V with deep CNNs. To solve this problem,

we present a network architecture consisting of two sub-

networks, including a two-stream encoding network and an

adaptive fusion network, as illustrated in Fig. 2. The two-

stream encoding networks consist of face stream and con-

text stream in which facial expression and context informa-

tion are encoded in the separate networks. By combining

two features in the adaptive fusion network, our method

attains an optimal performance for context-aware emotion

recognition.

3.2. Network Architectures

3.2.1 Two-stream Encoding Networks

In this section, we first present a dynamic model of our net-

works for analyzing videos, and then present a static model

for analyzing images.

Face encoding stream. As in existing facial expression

analysis approaches [6, 20, 40], our networks also have the

facial expression encoding module. We first detect and crop

the facial regions using the off-the-shelf face detectors [41]

to build input of face stream VF . The facial expression

encoding module is designed to extract the facial expres-

sion features denoted as XF from temporally stacked face-

cropped inputs VF by feed-foward process such that

XF = F(VF ;WF ), (1)

with face stream parameters WF . The facial expression en-

coding module is designed based on the basic operations of

3D-CNNs which are well-suited for spatiotemporal feature

representation. Compared to 2D-CNNs, 3D-CNNs have the

better ability to model temporal information for videos us-

ing 3D convolution and 3D pooling operations.

Specifically, the face encoding module consist of 5 con-

volutional layers with 3 × 3 × 3 kernels followed by batch

normalization (BN), rectified linear unit (ReLU) layers and

4 max-pooling layers with stride 2 × 2 × 2 except for the

first layer. The first pooling layer has a kernel size 1×2×2
with the intention of not to merge the temporal signal too

early. The number of kernels for five convolution layers are

32, 64, 128, 256 and 256, respectively. The final feature XF

is spatially averaged in the average-pooling layer.

Context encoding stream. In comparison to the face en-

coding stream, the context encoding stream includes a con-

text encoding module and an attention inference module. To

extract the context information except the facial expression,

we present a novel strategy that hides the faces and seeks

contexts based on the attention mechanisms. Specifically,

the context encoding module is designed to extract the con-

text features denoted as XC from temporally stacked face-

hidden inputs VC by feed-foward process:

XC = F(VC ;WC), (2)

with context stream parameters WC .

In addition, an attention inference module is learned to

extract attention regions of input, enabling the context en-

coding stream to focus on the sailent contexts. Concretely,

the attention inference module takes an intermediate fea-

ture XC as input to infer the attention A ∈ R
H×W , where
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(a) input (b) static model (c) dynamic model

Figure 3. Visualization of the attention maps of (b) static and (c)

dynamic context encoding models of CAER-Net.

H × W is the spatial resolution of the XC . To make the

sum of attention for each pixel to be 1, we spatially nor-

malize the attention A by using the spatial softmax [42] as

follows:

Âi =
exp(Ai)∑
j exp(Aj)

, (3)

where Â is the attention for context at each pixel i and

j ∈ {1, · · · , H × W}. Since we temporally aggregate the

features using 3D-CNNs, we only normalize the attention

weight across spatial axises not temporal axis. Note that the

attention is implicitly learned in an unsupervised manner.

Attention Â is then applied to the feature XC to make the

attention-boosted feature X̂C as follows:

X̄C = Â⊙XC , (4)

where ⊙ is an element-wise multiplication operator.

Specifically, we use five convolution layers to extract in-

termediate feature volumes XC followed by BN and ReLU,

and 4 max-pooling layers. All max-pooling layers except

for the first layer have 2 × 2 × 2 kernel with stride 2. The

first pooling layer has kernel size 1× 2× 2 similar to facial

expression encoding stream. The number of filters for five

convolution layers are 32, 64, 128, and 256, respectively.

In the attention inference module, we use two convolution

layers with 3 × 3 × 3 kernels producing 128 and 1 feature

channels, followed by BN and ReLU layers. The final fea-

ture X̄C is spatially averaged in the average-pooling layer.

Static model. Dynamic model described above can be

simplified for emotion recognition in images. A static

model, called CAER-Net-S, takes both a single frame face-

cropped image IF and face-hidden image IC as input. In

networks, all 3D convolution layers and 3D max-pooling

layers are replaced with 2D convolution layers and 2D max-

pooling layers, respectively. Thus, our two types of mod-

els can be applied in various environments regardless of the

data type.

Fig. 3 visualizes the attention maps of static and dy-

namic models. As expected, our networks both with static

and dynamic models localize the context information well,

except for the face expression. By exploiting the temporal

connectivity, the dynamic model can localize more sailent

regions compared to the static model.
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Figure 4. Some examples of the attention weights, i.e., λF and λC ,

in our networks.

3.2.2 Adaptive Fusion Networks

To recognize the emotion by using the face and context in-

formation in a joint manner, the features extracted from two

modules should be combined. However, a direct concate-

nation of different features [14] often fails to provide opti-

mal performance. To alleviate this limitation, we build the

adaptive fusion networks with an attention model for infer-

ring an optimal fusion weight for each feature XF and X̄C .

The attentions are learned such that λF = F(XF ;WD) and

λC = F(X̄C ;WE) with network parameters WD and WE ,

respectively. Softmax function make the sum of these atten-

tions to be 1, i.e., λF + λC = 1. Fig. 4 shows some exam-

ples of the attention weights, i.e., λF and λC , in CAER-Net.

According to contents, the attention weights are adaptively

determined to yield an optimal solution.

Unlike methods using the simple concatenation [14], the

learned attentions are applied to inputs as

XA = Π(XF ⊙ λF , X̄C ⊙ λC), (5)

where Π is a concatenation operator. We then estimate the

final output y for emotion category by classifier:

y = F(XA;WG), (6)

where WG represents the remainder parameters of the adap-

tive fusion networks.

Specifically, the fusion networks consist of 6 convolu-

tion layers with 1 × 1 kernels. The four layers use to pro-

duce fusion attention λF and λC . While the intermediate

two layers that receive each stream feature as input produce

128 channel feature, the remaining two layers produce 1

channel attention for facial and contextual features. For the

two layers that act as final classifiers, the first convolution

layer produces 128 channel feature followed by ReLU and

dropout layers to prevent the problem of the network over-

fitting, and the second convolution layer produces K chan-

nel feature to estimated the emotional category.

10146



Time

Unlabeled	clip	(Group	&	ambiguous)

Neutral Happy Surprise Sadness Disgust FearAnger

Labeled	clip

Time

Time

Step	1)

Step	2)

Step	3)

Uncollected	clipCollected	clip

Figure 5. Procedure for building CAER benchmark: we divide the

video clips to the shot with shot boundary detection method, and

remove face-undetected shots, group-level and ambiguous shots to

estimate the emotion. Finally, we annotate the emotion category.

4. The CAER Benchmark

Most existing datasets [10, 43] have focused on the hu-

man facial analysis, and thus they are inappropriate for

context-aware emotion recogntion. In this section, we intro-

duce a benchmark by collecting large-scale video clips from

TV shows and annotating them for context-aware emotion

recogntion.

4.1. Annotation

We first collected the video clips from 79 TV shows and

then refined them using the shot boundary detector, face de-

tector/tracking and feature clustering 1. Each video clip was

manually annotated with six emotion categories, including

“anger”, “disgust”, “fear”, “happy”, “sad”, and “surprise“,

as well as “neutral”. Six annotators were recruited to as-

sign the emotion category on the 20,484 clips of the ini-

tial collection. Since all the video clips have audio and vi-

sual tracks, the annotators labeled them while listening to

the audio tracks for more accurate annotations. Each clip

was evaluated by three different annotators. The annotation

was performed blindly and independently, i.e. the annota-

tors were not aware of the other annotator’s response. Im-

portantly, in comparison of existing datasets [9, 14], con-

fidence scores were annotated as well as emotion category,

which can be thought as the probability of the annotation re-

liability. If two more annotators assigned the same emotion

1https://github.com/pyannote/pyannote-video

Category # of clips # of frames %

Anger 1,628 139,681 12.33

Disgust 719 59,630 5.44

Fear 514 46,441 3.89

Happy 2,726 219,377 20.64

Neutral 4,579 377,276 34.69

Sad 1,473 138,599 11.16

Surprise 1,562 126,873 11.83

Total 13,201 1,107,877 100

Table 1. Amount of video clips in each category on CAER dataset.

categories, the clip was remained in the database. We also

removed the clips which have lower confidence average un-

der the 0.5. Finally, 13,201 clips and about 1.1M frames

were available. The videos range from short (around 30

frames) to longer clips (more than 120 frames). The average

of sequence length is 90 frames. In addition, we extracted

about 70K static images from CAER to create a static im-

age subset, called CAER-S. The dataset is randomly split

into training (70%), validation (10%), and testing (20%)

sets. Overall stage of data acquisition and annotation is il-

lustrated in Fig. 5. Table 1 summarizes the number of clips

per each cateogry in the CAER benchmark.

4.2. Analysis

We compare CAER and CAER-S datasets with other

widely used datasets, such as EMOTIC [14], Affect-

Net [43], AFEW [44], and Video Emotion datasets [45],

as shown in Table 2. According to the data type, the

datasets are grouped into the static and dynamic. Even if

static databases for facial expression analysis such as Af-

fectNet [43] and FER-Wild [26] collect a large amount of

facial expression images from the web, they have only face-

cropped images not including surrounding context. In ad-

dition, EMOTIC [14] do not contain human facial images,

as exampled in Fig. 6, thus causing subjective and am-

biguous labelling from observers. On the other hand, com-

monly used video emotion recognition datasets had insuf-

ficient amount of data than image-based datasets [45, 46].

Compared to these datasets, the CAER dataset provides the

large-scale video clips which are sufficient amount to learn

the machine learning algorithms for context-aware emotion

recognition.

5. Experiments

5.1. Implementation Details

CAER-Net was implemented with PyTorch library [47].

We trained CAER-Net from scratch with learning rate ini-

tialized as 5 × 10−3 and dropped by a factor of 10 every

4 epochs. CAER-Net was learned with the cross-entropy

loss function [48] with ground-truth emotion labels with

batch size to 32. As CAER dataset has various length of
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(a) EMOTIC [14] (b) AffectNet [43] (c) CAER

Figure 6. Examples in the EMOTIC [14], AffectNet [43] and CAER. While EMOTIC includes face-unvisible images to yeild ambiguous

emotion recognition, AffectNet includes face-cropped images which have limited to use of context.

Data type Dataset Amount of data Setting Annotation type Context

Static (Images)

EMOTIC [14] 18,316 images Web 26 Categories ✓

AffectNet [43] 450,000 images Web 8 Categories ✗

CAER-S 70,000 images TV show 7 Categories ✓

Dynamic (Videos)
AFEW [44] 1,809 clips Movie 7 Categories ✗

CAER 13,201 clips TV show 7 Categories ✓

Table 2. Comparison of the CAER with existing emotion recognition datasets such as EMOTIC [14], AffectNet [43], AFEW [44], and

Video Emotion [45] datasets. Compared to existing datasets, CAER contains large amount of video clips for context-aware emotion

recognition.

videos, we randomly extracted single non-overlapped con-

secutive 16 frame clips from every training video which

sampled at 10 frames per second. While the clips of fa-

cial VF are resized to have the frame size of 96 × 96, the

clips of contextual parts VC are resized to have the frame

size of 128× 171 and randomly cropped into 112× 112 at

training stage. We also trained static model of CAER-Net-S

with CAER-S dataset with the input size of 224 × 224. To

reduce the effects of overfitting, we employed the dropout

scheme with the ratio of 0.5 between 1× 1 convolution lay-

ers, and data augmentation schemes such as flips, contrast,

and color changes. At testing phase, we used a single cen-

ter crop per contextual parts clips. For video predictions,

we split a video into 16 frame clips with a 8 frame overlap

between two consecutive clips then average clip predictions

of all clips.

5.2. Experimental Settings

We evaluated CAER-Net on the CAER and AFEW

dataset [9], respectively. For evaluation of the proposed

networks quantitatively, we measured the emotion recogni-

tion performance by classification accuracy as used in [27].

We reproduced four classical deep network architectures

before the fully-connected layers, including AlexNet [31],

VGGNet [32], ResNet [33], and C3D [49], as the baseline

methods. We adopt two fully-connected layers as classi-

fiers for the baseline methods. We initialized the feature ex-

traction modules of all the baselines using pretrained mod-

Methods w/F w/C w/cA w/fA Acc. (%)

CAER-Net-S

✓ 70.09

✓ ✓ 65.65

✓ ✓ ✓ ✓ 73.51

CAER-Net

✓ 74.13

✓ ✓ 71.94

✓ ✓ 74.36

✓ ✓ ✓ 74.94

✓ ✓ ✓ 75.57

✓ ✓ ✓ ✓ 77.04

Table 3. Ablation study of CAER-Net-S and CAER-Net on the

CAER-S and CAER datasets, respectively. ‘F’, ‘C’, ‘cA’, and ‘fA’

denote face encoding stream, context encoding stream, context at-

tention module and fusion attention module, respectively.

els from two large-scale classification datasets such as Im-

ageNet [50] and Sports-1M [51], and fine-tuned whole net-

works on CAER benchmark. We trained all parameters of

learning rate 10−4 for fine-tuned models.

5.3. Results on the CAER dataset

Ablation study. We analyzed CAER-Net-S and CAER-

Net with ablation studies as varying the combination of dif-

ferent inputs such as cropped face and context, and attention

modules such as context and fusion attention modules. For

all those experiments, CAER-Net-S and CAER-Net were

trained and tested on the CAER-S and CAER datasets, re-

spectively. For quantitative analysis of ablation study, we
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(a) CAER-Net w/F (b) CAER-Net

Figure 7. Confusion matrix of CAER-Net with face stream only

and with face and context streams on the CAER benchmark.

(a) (b) (c) (d)

Figure 8. Visualization of the attention: (from top to bottom) in-

puts, attention maps of CAER-Net-S and CAER-Net. (a) and (b)

are results of ablation study without hiding the face during train-

ing, (c) and (d) with hiding the face.

examined the classification accuracy on the CAER bench-

mark as shown in Table 3. The results show that the best

result can be obtained when both the face and context are

used as inputs. As our baseline, CAER-Net w/F that con-

siders facial expression only for emotion recognition pro-

vides the accuracy 74.13 %. Compared to this, our CAER-

Net that fully makes use of both face and context shows the

best performance. When we compared the static and dy-

namic models, CAER-Net shows 3.53 % improvement than

CAER-Net-S, which shows the importance to consider the

temporal dynamic inputs for context-aware emotion recog-

nition.

Fig. 7 demonstrates the confusion matrix of CAER-Net

w/F and CAER-Net, which also verify that compared to

the model that only focuses on facial stream only, a joint

model that considers facial stream and context stream si-

multaneously can highly boost the emotion recognition per-

formance. Happy and neutral accuracies were increased

by 7.48% and 5.65%, respectively, which clearly shows

that context information helps distinguishing these two cat-

egories rather than only using facial expression. Finally, we

conducted an ablation study for the context attention mod-

ule. First of all, when we trained CAER-Net-S and CAER-

Net without hiding the face, they tended to focus on the

most discriminative parts only (i.e., faces) as depicted in

the preceding two columns Fig. 8. Secondly, we conducted
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Figure 9. Quantitative evaluation of CAER-Net-S in comparison

to baseline methods on each category in the CAER-S benchmark.

Methods Acc. (%)

ImageNet-AlexNet [31] 47.36

ImageNet-VGGNet [32] 49.89

ImageNet-ResNet [33] 57.33

Fine-tuned AlexNet [31] 61.73

Fine-tuned VGGNet [32] 64.85

Fine-tuned ResNet [33] 68.46

CAER-Net-S 73.51

Table 4. Quantitative evaluation of CAER-Net-S in comparison to

baseline methods on the CAER-S benchmark .

another experiment on actionless frames as depicted in the

second and last columns. As shown in the last two columns

Fig. 8, both CAER-Net-S and CAER-Net attend to not only

“things that move” but also the salient scene that can be

an emotion signals. To summarize, our context encoding

stream enables the networks to attend salient context that

boost performance for both images and videos.

Comparison to baseline methods. In Fig. 9 and Table 4,

we evaluated CAER-Net-S with baseline 2D CNNs based

approaches. The standard networks including AlexNet [31],

VGGNet [32], and ResNet [33] pretrained with ImageNet

were reproduced for comparison with CAER-Net-S. In ad-

dition, we also fine-tuned these networks on the CAER-S

dataset. Compared to these baseline methods, our CAER-

Net-S improves the classification performance than fine-

tuned ResNet by 5.05%. Moreover, CAER-Net-S consis-

tently performs favorably against baseline deep networks on

each category in the CAER-S benchmark, which illustrates

that CAER-Net can learn more discriminative representa-

tion for this task. In addition, we evaluated CAER-Net with

a baseline 3D CNNs based approach in Table 5. Compared

to C3D [49], our CAER-Net has shown the state-of-the-art

performance on the CAER benchmark.

Finally, Fig. 10 shows the qualitative results with learned

attention maps obtained by CAM [34] with fine-tuned VG-

GNet and in context encoding stream of CAER-Net-S. Note

that images in Fig. 10 were correctly classified to ground-

truth emotion categories both with fine-tuned VGGNet and
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(a) “Disgust” (b) “Fear” (c) “Surprise” (d) “Sad” (e) “Happy” (f) “Fear”

Figure 10. Visualization of learned attention maps in CAER-Net-S: (from top to bottom) inputs, attention maps of CAM [34], inputs of

context encoding stream, attention maps in context encoding stream. Note that red color indicates attentive regions and blue color indicates

suppressed regions. Best viewed in color.

Methods Acc. (%)

Sports-1M-C3D [49] 66.38

Fine-tuned C3D [49] 71.02

CAER-Net 77.04

Table 5. Quantitative evaluation of CAER-Net in comparison to

C3D [49] on the CAER benchmark .

CAER-Net-S. Unlike CAM [34] that only considers facial

expressions, the attention mechanism in CAER-Net-S lo-

calizes context information well that can boost the emotion

recognition performance in a context-aware manner.

5.4. Results on the AFEW dataset

We conducted an additional experiment to verify the ef-

fectiveness of the CAER dataset compared to the AFEW

dataset [9]. When we trained CAER-Net on the combi-

nation of CAER and AFEW datasets, the highly improve-

ment was attained. It demonstrates that CAER dataset could

be complement data distribution of the AFEW dataset. It

should be noted that Fan et al. [40] has shown the better

performance, they are formulated the networks with the en-

semble of various networks to maximize the performance

in EmotiW challenge. Unlike this, we focused on investi-

gating how context information helps to improve the emo-

tion recognition performance. For this purpose, we choice

shallow architecture rather than Fan et al. [40]. If the face

encoding stream adopt more complicated networks such

Methods Training data Acc. (%)

VielZeuf et al. [52] w/F FER+AFEW 48.60

Fan et al. [19] w/F FER+AFEW 48.30

Hu et al. [53] w/F AFEW 42.55

Fan et al. [40] w/F FER+AFEW 57.43

CAER-Net w/F AFEW 41.86

CAER-Net CAER 38.65

CAER-Net AFEW 43.12

CAER-Net CAER+AFEW 51.68

Table 6. Quantitative evaluation of CAER-Net on the AFEW [9]

benchmark, as varying training datasets.

Fan et al. [40], the performance of CAER-Net also will be

highly boosted. We reserve this as further works.

6. Conclusion

We presented CAER-Net that jointly exploits human

facial expression and context for context-aware emotion

recognition. The key idea of this approach is to seek sailent

context information by hiding the facial regions with an at-

tention mechanism, and utilize this to estimate the emotion

from contexts, as well as the facial information together. We

also introduced the CAER benchmark that is more appro-

priate for context-aware emotion recognition than existing

benchmarks both qualitatively and quantitatively. We hope

that the results of this study will facilitate further advances

in context-aware emotion recognition and its related tasks.

10150



References

[1] Sidney D’Mello, Rosalind W Picard, and Arthur Graesser.

Toward an affect-sensitive autotutor. IEEE Int. Systems,

2007.

[2] Christina Lisetti, Fatma Nasoz, Cynthia LeRouge, Onur

Ozyer, and Kaye Alvarez. Developing multimodal intelli-

gent affective interfaces for tele-home health care. Int. Jou.

of Hum.-Comp. Stud., 2003.

[3] Georgios N Yannakakis and Julian Togelius. Experience-

driven procedural content generation. IEEE Trans. AC, 2011.

[4] Caifeng Shan, Shaogang Gong, and Peter W McOwan. Fa-

cial expression recognition based on local binary patterns: A

comprehensive study. Image and Vis. Comput., 2009.

[5] Lin Zhong, Qingshan Liu, Peng Yang, Bo Liu, Junzhou

Huang, and Dimitris N Metaxas. Learning active facial

patches for expression analysis. In: CVPR, 2012.

[6] C Fabian Benitez-Quiroz, Ramprakash Srinivasan, and

Aleix M Martinez. Emotionet: An accurate, real-time al-

gorithm for the automatic annotation of a million facial ex-

pressions in the wild. In: CVPR, 2016.

[7] Yong Li, Jiabei Zeng, Shiguang Shan, and Xilin Chen. Oc-

clusion aware facial expression recognition using cnn with

attention mechanism. IEEE Trans. IP, 2018.

[8] Shan Li, Weihong Deng, and JunPing Du. Reliable crowd-

sourcing and deep locality-preserving learning for expres-

sion recognition in the wild. 2017.

[9] Abhinav Dhall, Roland Goecke, Simon Lucey, and Tom

Gedeon. Acted facial expressions in the wild database. Tech-

nical Report TR-CS-11, 2011.

[10] Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron

Courville, Mehdi Mirza, Ben Hamner, Will Cukierski,

Yichuan Tang, David Thaler, Dong-Hyun Lee, et al. Chal-

lenges in representation learning: A report on three machine

learning contests. In: ICONIP, 2013.

[11] Lisa Feldman Barrett, Batja Mesquita, and Maria Gendron.

Context in emotion perception. Curr. Dir. in Psych. Science,

2011.

[12] Elissa M Aminoff, Kestutis Kveraga, and Moshe Bar. The

role of the parahippocampal cortex in cognition. Trends in

cognitive sciences, 2013.

[13] Chen Chen, Zuxuan Wu, and Yu-Gang Jiang. Emotion in

context: Deep semantic feature fusion for video emotion

recognition. In: MM, 2016.

[14] Ronak Kosti, Jose M Alvarez, Adria Recasens, and Agata

Lapedriza. Emotion recognition in context. In: CVPR, 2017.

[15] Bing Li, Weihua Xiong, Weiming Hu, and Xinmiao Ding.

Context-aware affective images classification based on bi-

layer sparse representation. In: MM, 2012.

[16] Jufeng Yang, Dongyu She, Yu-Kun Lai, Paul L Rosin, and

Ming-Hsuan Yang. Weakly supervised coupled networks for

visual sentiment analysis. In: CVPR, 2018.

[17] E Friesen and Paul Ekman. Facial action coding system: a

technique for the measurement of facial movement. Palo

Alto, 1978.

[18] Stefanos Eleftheriadis, Ognjen Rudovic, and Maja Pantic.

Discriminative shared gaussian processes for multiview and

view-invariant facial expression recognition. IEEE Trans. IP,

2015.

[19] Yin Fan, Xiangju Lu, Dian Li, and Yuanliu Liu. Video-based

emotion recognition using cnn-rnn and c3d hybrid networks.

In: ICMI, 2016.

[20] Jiyoung Lee, Sunok Kim, Seungryong Kim, and Kwanghoon

Sohn. Spatiotemporal attention based deep neural networks

for emotion recognition. In: ICASSP, 2018.

[21] Mihalis A Nicolaou, Hatice Gunes, and Maja Pantic. Con-

tinuous prediction of spontaneous affect from multiple cues

and modalities in valence-arousal space. IEEE Trans. AC,

2011.

[22] Konrad Schindler, Luc Van Gool, and Beatrice de Gelder.

Recognizing emotions expressed by body pose: A biologi-

cally inspired neural model. Neur. Net., 2008.

[23] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih,

Zara Ambadar, and Iain Matthews. The extended cohn-

kanade dataset (ck+): A complete dataset for action unit and

emotion-specified expression. In: CVPR Work., 2010.

[24] Maja Pantic, Michel Valstar, Ron Rademaker, and Ludo

Maat. Web-based database for facial expression analysis. In:

ICME, 2005.

[25] Abhinav Dhall, Roland Goecke, Simon Lucey, and Tom

Gedeon. Static facial expression analysis in tough condi-

tions: Data, evaluation protocol and benchmark. In: ICCV

Work., 2011.

[26] Ali Mollahosseini, Behzad Hasani, Michelle J Salvador, Ho-

jjat Abdollahi, David Chan, and Mohammad H Mahoor. Fa-

cial expression recognition from world wild web. In: CVPR

Work., 2016.

[27] Abhinav Dhall, Roland Goecke, Jyoti Joshi, Jesse Hoey, and

Tom Gedeon. Emotiw 2016: Video and group-level emotion

recognition challenges. In: ICMI, 2016.

[28] G. Patterson and J. Hays. Coco attributes: Attributes for

people, animals, and objects. In: ECCV, 2016.

[29] Andrea Kleinsmith and Nadia Bianchi-Berthouze. Recog-

nizing affective dimensions from body posture. In: ACII,

2007.

[30] A. Kleinsmith, N. Bianchi-Berthouze, and A. Steed. Au-

tomatic recognition of non-acted affective postures. IEEE

Trans. Systems, 2011.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In: NeurIPS, 2012.

[32] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In: CVPR,

2016.

[34] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrimi-

native localization. In: CVPR, 2016.

[35] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,

Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.

Grad-cam: Visual explanations from deep networks via

gradient-based localization. In: ICCV, 2017.

10151



[36] Krishna Kumar Singh, Fanyi Xiao, and Yong Jae Lee. Track

and transfer: Watching videos to simulate strong human su-

pervision for weakly-supervised object detection. In: CVPR,

2016.

[37] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In

So Kweon. Cbam: Convolutional block attention module.

In: ECCV, 2018.

[38] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In: CVPR, 2018.

[39] Quanzeng You, Hailin Jin, and Jiebo Luo. Visual sentiment

analysis by attending on local image regions. In: AAAI,

2017.

[40] Yingruo Fan, Jacqueline CK Lam, and Victor OK Li. Video-

based emotion recognition using deeply-supervised neural

networks. In: ICMI, 2018.

[41] Davis E King. Dlib-ml: A machine learning toolkit. Joul. of

Mach. Learn. Res., 2009.

[42] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Ac-

tion recognition using visual attention. arXiv:1511.04119,

2015.

[43] Ali Mollahosseini, Behzad Hasani, and Mohammad H Ma-

hoor. Affectnet: A database for facial expression, valence,

and arousal computing in the wild. IEEE Trans. AC.

[44] Abhinav Dhall, Roland Goecke, Simon Lucey, Tom Gedeon,

et al. Collecting large, richly annotated facial-expression

databases from movies. IEEE Multi., 2012.

[45] Yu-Gang Jiang, Baohan Xu, and Xiangyang Xue. Predicting

emotions in user-generated videos. In: AAAI, 2014.

[46] Jean Kossaifi, Georgios Tzimiropoulos, Sinisa Todorovic,

and Maja Pantic. Afew-va database for valence and arousal

estimation in-the-wild. Image and Vis. Comput., 2017.

[47] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[48] Sunok Kim, Dongbo Min, Seungryong Kim, and

Kwanghoon Sohn. Unified confidence estimation net-

works for robust stereo matching. IEEE Trans. IP, 2018.

[49] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In: ICCV, 2015.

[50] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In: CVPR, 2009.

[51] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In: CVPR,

2014.
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