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ABSTRACT

While recognizing human actions and surrounding scenes addresses
different aspect of video understanding, they have strong correla-
tions that can be used to complement the singular information of
each other. In this paper, we propose an approach for joint action
and scene recognition that is formulated in end-to-end learning
framework based on temporal attention techniques and the fusion
of them. By applying temporal attention modules to the generic
feature network, action and scene features are extracted efficiently,
and then they are composed to a single feature vector through the
proposed fusion module. Our experiments on the CoVieW18 dataset
show that our model is able to detect temporal attention with only
weak supervision, and remarkably improves multi-task action and
scene classification accuracies.
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Figure 1: Basic concept of our approach. Video classification
performance can be improved by considering semantic cor-
relations between actions and scenes.

1 INTRODUCTION

Comprehensive video understanding has recently received increas-
ing attention from the research communities and industries with the
arising of large scale video data and the efficient machines learning
techniques that can learn and understand like humans [2, 7, 18, 24].

In computer vision, video understanding is often addressed in
the form of recognition or localization of human-centric events [3,
8, 16, 22, 23]. However, video understanding in the wild is an ex-
tremely challenging problem due to the irrelevance, which means
that most videos in the real world contain large numbers of irrel-
evant frames pertaining to target tasks, which hinders to extract
salient information.

Under such challenges, we argue that recognizing human activi-
ties and surrounding scenes of untrimmed videos can be used to
complement the singular information of each other. The intuition
behind this is straightforward: the presence (or absence) of particu-
lar scene properties can often be used to infer the possible subset
of actions that can take place and vice versa. For example, if there
is a ‘pool’” within the scene, then ‘diving’ becomes a possible action
(See fig.1). On the contrary, if there is no ‘pool’, but a basketball
court, then the probability of the ‘diving’ action decreases.

Motivated by this intuition, we introduce a novel cascade net-
work that sequentially detects, associates, and recognizes both
human activities and surrounding scenes in large-scale untrimmed
videos. Our approach first starts to determine when the semantic
information of interests occur in untrimmed videos by learning
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Figure 2: An overview of the proposed model for detecting temporal attention, fusing the action and scene feature, and per-
forming the classification. First, a temporal attention networks detect an action and a scene temporal attention in the form of
the probability distribution. Later, a fusion module combines semantic features about the action and scene with the temporal

attentions. Finally, the fused feature is further analyzed by an action classifier and a scene classifier

temporal attention module. Without temporal annotations of in-
stances, the attention module directly takes an untrimmed video
as input and learns to predict the frame-wise probabilities of its
video-level label pertaining to target tasks. Then the detected se-
mantic entities (actions and scenes) are deeply fused to represent
a long untrimmed video into a single feature vector. A number of
ways of differentiable fusion are investigated, such as concatena-
tion, sum, and multiplication, which facilitates joint training of all
components in an end-to-end manner. Finally, the classification
module predicts the probabilities of actions and scenes through each
classifier. We test our approach over the large-scale challenging
CoVieW 18 dataset where both categories of action and scene are an-
notated in each video. The results demonstrate that all components
of the proposed network are effectively engineered, composing
semantic cues for action and scene recognition.

2 RELATED WORKS

In video categorization, some works in the literature use semantic
representations. Liu et al. [11] focus on attribute-based event recog-
nition. Jain et al. [14] consider the relationships between object and
action, and Ikizler et al. [16] consider the combination of object and
scene to improve action classification. While these works mainly
focused on improving action classification performance, we aim to
comprehensively understand untrimmed videos by leveraging the
interactions between semantic entities. Gao and Ma [10] proposed
a panoramic frame and representative feature patches as middle-
level features for movie scene recognition approach. They used the
informative correlations between video scenes to enhance the recog-
nition performance of individual video scene. Ding et al. [20] pro-
posed a Multi-view Multi-instance learning model (MMIL) which
considers both context and independent instance in a bag simulta-
neously. They extracted the same context cues from different view
and effectively integrated them into a unified learning framework
based on joint sparse coding. However, these works experiments

on the movie clips, thus, we do not know how they perform in
real-world videos.

Several approaches have combined context cues to improve ac-
tion recognition performance in controlled scenarios [4, 9, 12, 16,
24]. Marszaek et al. [15] show the relation of the co-occurrence
between actions and scenes to develop useful visual representa-
tions for extracting short actions in movie clips. To extract the
robust visual features for action understanding, [1, 4, 14, 16] show
that implicit and explicit modeling of the relationships between ob-
jects in the video allows to discriminate action occurring in videos,
especially by reducing the confusion between actions with simi-
lar motions such as drinking and smoking. More recently, Wu et
al. [24] use robust discriminative networks to learn object, scene,
and action relationships that tend to improve activity classification
performance. In the same context as this work, Heilbron et al. [9]
expand this idea further by exploiting semantic information ac-
quired from action-object and action-scene relationships to address
action detection.

3 PROPOSED METHOD

Given an untrimmed video V, our goal is to estimate the posterior
probabilities of human activity and surrounding scene such that

pEV) and p(z°|V), (1)

where each of z% and z° is the annotated action and scene class
label of video V.

Inspired by the attention-based video understanding model [22]
and the semantic context fusion model [9, 16, 24], we propose a
novel deep architecture that boosts action and scene classification
performance. Our model employs the soft attention mechanism to
obtain more discriminative features, and further effectively uses
interactions which exist between action and scene features. Our
method first estimates the temporal attentions using two sequential
convolutional activations to obtain the independent generic features
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Figure 3: The details of the attention network. Frame-level
feature fed into the sequential convolution, batch normal-
ization, and ReLU layers. After passing through the last soft-
max layer, output the attention map in the form of probabil-
ity distribution.

related to the action and the scene, and then performs fusion of
two generated features for the action and the scene classification.

Fig.2 shows an overview of our approach which consists of three
stages: (i) temporal attention module, (ii) semantic feature fusion
module and (iii) classification module. At first, the temporal atten-
tion module detects the frames that are likely to contain the action
or scene corresponding to the annotated labels by leveraging soft
attention mechanism. For example, the probabilities are close to
zero for the frames that does not have any related activity and scene
to the annotated label, and vice versa. The attention networks are
trained in weakly-supervised manner without the ground-truth
temporal annotaions following [13]. Second, extracted features from
the attention module are deeply combined through the semantic fu-
sion module to complement the singular insformation of each other.
We consider three different fusion strategies such as concatenation,
sum, and multiplication, where a global average pooling layer is
additionally applied to the end for the aggregation of temporal in-
formations. Finally, we are able to produce the prediction score by
passing fused video-level features through the classification module
which consists of two fully-connected classifiers for each action
and scene recognition task.

3.1 Stage 1: Temporal Attention Module

At first, a set of video frames are fed into deep networks for feature
extraction. These feature representations are utilized for providing
visual content to the temporal attention module. Formally, given
video frames F and the feature extraction network parameters wy,
we extract the representations as

H = 7(F; Wy,). 2

The temporal attention module learns to rank these frame-level
features according to the importance weight through sequential 1-
dim convolutional layers followed by batch normalization and ReLU.
The estimated attentions are further normalized along temporal
dimension with softmax operator, such that

,_ _ exp(F(Hi; W)
C L exp(F(HE W)

®)

where W; is the temporal attention network parameters and L is
an arbitrary length of video. This is illustrated in Fig. 3. The esti-
mated attentions are then multiplied with the frame-level features
to highlight the discriminative frames and suppress the irrelevant
ones as follows:
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Figure 4: Three different methods for the semantic feature
fusion: (a) concatenate the outputs of stage 1 in first layer
of the fusion module, (b) element-wise summation between
two outputs, and (c) element-wise multiplication between
two outputs.

Note that we implemented temporal attention networks for each
action and scene recognition task thus {W¢%, W*} and {X%, X*} are
obtained where each a and s represents action and scene.

3.2 Stage 2: Semantic Fusion Module

Motivated from that semantic contexts of untrimmed video have
strong correlations between them and can help interpreting each
other, we consider three different methods to fuse the attended
features extracted from the temporal attention module as illustrated
in Fig. 4.

Our intention is to fuse the two networks such that channel
responses at the same temporal position are put in correspondence.
To motivate this, consider the previous example of the action, diving
and the scene, pool. It is highly likely that the pool will come to the
same scene at the moment of diving and thus, it is reasonable to
consider temporal correspondence to maximize the correlation of
the action and the scene features. This temporal correspondence is
easily achieved as we employ the same architecture in two attention
networks. A fusion function f : X%, X* — Y fuses two feature
maps X%, X5 € REXP to produce an output map Y; € REXD’,
where 1 < i < D’ and D’ are the number of channels of the output
feature maps. The fused feature is fed into a Global Average Pooling
(GAP) layer, and so that the output of the semantic feature fusion
module such that:

1 L
yi = Z Z Yi’j (5)
Jj=1
where 1 < i < D’ and L is the length of the frames.

3.2.1 Concatenation fusion. Y4 = f€at(X% XS) stacks the
two feature maps across the feature channels D:

Ycat — Xa”Xs (6)

where Y% € RW*2D and || represents the concatenation operator.

Concatenation is the most common strategy keeping the correspon-
dence of two features by simple stacking. The drawback of this
feature is that it uses twice as many parameters in stage 3 compared
to other fusion methods.

3.2.2  Sum fusion. YSU™ = fSum(Xa XS) computes the sum of
the two feature maps at the same temporal locations ¢ and feature
channel d:

sum __ a s
Yt,d - Xt,d ® Xt,d (7)



where 1 < t < Land 1 < d < D and & represents element-
wise summation operator. Since the outputs of stage 2 have the
same temporal resolution, sum fusion can consider more detailed
correspondence using element-wise process.

3.2.3  Multiplication fusion. Y4 = fmul(xa Xs) performs
element-wise multiplications of X% and X5:

mul _ ya s
Yt,d - Xt,d © Xt,d (8)

where 1 < t < L,1 < d < D and O represents the element-
wise multiplication operator. The resulting feature ymul ¢ RWxD
captures multiplicative interactions at corresponding features. In
this fusion, the features with high weights in both attention maps
are enhanced and with low weights in both attention maps are

further attenuated to obtain a more discriminative feature.

3.3 Stage 3: Classification Module

In the classification module, we aim to classify each video into
the action and scene categories by using two classifiers, based on
the output features of the fusion module . Suppose we have n,
action classes and ng scene classes, we learn a linear mapping W& €
R"XD and WS € R™s*P to transform the feature representation

into a n, and ng-dimensional score vector z% and z°, i.e., 7k = chlsy,

where k € {a,s} and chls are the classification network parameters.
This score vector can be also passed through a softmax layer as
follows:

z’f = softmax(if-c), 9)

where Zf? denotes the i*" dimension of z¥. For clarity, we use the

notation z¥

k

to denote the original classification score of video and
z" to represent the softmax classification score.

3.4 Training

We first train our proposed model without semantic fusion module
so that the temporal attention module is previously learned in a
weakly-supervised manner. Only with the video-level labels, the
temporal attention networks are trained to automatically reason
the temporal weights of possible instances that may lead to superior
classification performances. Specifically, our loss function is defined
as a summation of cross-entropys from each action and scene label,

L= Laction + Lscene~ (10)

where

M
Laction == )y 1" log(2¢)
i=1
11
- (a1)
Lscene = — yfcenelog(ff),
i=1
and y is the annotated labels for action and scene, M and N are the
number of each action or scene classes. Note that the parameters
of temporal attention network are initialized before training to
estimate a uniform probability distribution over the video frames
in a manner similar to [21].
We further fine-tune the whole networks initialized with learned
parameters from temporal attention networks. The components of

our model are all differentiable, facilitating an end-to-end training
of our model with the same cross-entropy loss in (10).

3.5 Implementation details

To make our findings reproducible, we describe here the implemen-
tation details of our model. We use PyTorch [17] to implement our
models. Since each video sequence from CoVieW’18 has arbitrary
number of frame, we applied zero padding to the extracted features
so that the length of all the features fed into the attention module
is fixed to 300, i.e., H € R300%1024 \we trained our model with the
adaptive momentum estimation algorithm [6], where the batch size
is set to 70. The initial learning rate is set to 0.001 and decreases
every 1,200 iterations by a factor of 10, and it stops training at 6,000
iterations. Four 1-dim convolutional layers are used in temporal at-
tention network with kernel size of 3. Each of them has 512, 128, 32,
and 1 channels. The output dimension of the fusion layer depends
on the fusion method, 2048 for concatenation fusion and 1024 for
sum and multiplication fusion. Each of action and scene classifiers
consists of two fully-connected convolutional layers where the first
one has 1,024 channels and the last one has 285 and 29 channels
for each action and scene classification.

4 EXPERIMENTS

In this section, we describe the experimental results of our method.
We introduce the evaluation datasets and show the effectiveness
of the temporal attention and feature fusion compared to direct
classification without attention or fusion.

4.1 Dataset

We have used CoVieW 18 dataset in our experiment. The CoVieW18
dataset is released for multi-task action and scene recognition in
untrimmed video that sampled from the Youtube-8M dataset [18]
with annotated action and scene class labels for each video. Each
video in dataset is composed of pre-extracted frame-level feature us-
ing Inception network trained on ImageNet [19] and about Youtube
video URLs. Although our model can be trained end-to-end from the
feature extraction network using back-propagation, we train from
the attention module since the Coveiw 2018 dataset is pre-extracted
features. Our model can be improved by end-to-end learning as
shown in [5].

The dataset is consist of 90,853 videos, 285 actions and 29 scenes
and each video has one action and one scene associated with it. We
take 84, 853, 3,000 and 3, 000 videos for training, validation, and
testing, respectively. All the videos in the dataset are decoded at 1
frame-per-second up to the first 300 seconds (5 minutes) and the
shortest video has 120 frames (2 minutes).

4.2 Results

In this section, we show quantitative evaluation of the temporal
attention networks. And then, we compare the results according to
the fusion method: (1) Concatenation; (2) Sum; (3) Multiplication.
Finally, to validate the effectiveness of the temporal attention and
the feature fusion, we compare with the following baselines: (1)
Without attention and fusion; (2) Use attention without fusion; (3)
Use fusion without attention.
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Figure 5: An example of temporal attention for a video sequence of "Surfing on the Beach". Our method is able to generates
weights of how much each frame is associated with the classification tasks. The region denoted by a bold color is the frame
which have a large value of the weight.

Table 1: Performance comparison of different fusion strate-
gies on CoVieW dataset. Accuracies are measured using the
mAP metric at top 1 and top 5.

Methods Action@1 Scene@l Action@5 Scene@5
Concatenation 83.5 94.63 97.17 99.1
Sum 84.23 95.07 97.2 99.2
Multiplication 84.8 96.07 97.3 99.27

4.2.1 Temporal attention module. We first evaluate the tempo-
ral attention module to investigate the significance of leveraging
the temporal clues for video classification. In fig 4, we show the
example of the extracted temporal attention weights and actual
frames of the video sequence. The temporal attention is illustrated
by heatmaps, in which frames related with the action "surfing" or
the scene "beach" have high scores, and the frames which are less
discriminative for the semantic representation have low scores.

4.2.2 Semantic fusion module. We compare different fusion
strategies in Table 1. Results are evaluated using the mean Average
Precision (mAP) metric at top 1 and top 5. We observe that Con-
catenation fusion perform considerably lower than Sum and Multi-
plication fusion. Multiplication fusion performs best and is slightly
better than Sum fusion. What stand out is that Concatenation fu-
sion shows lowest performance even though it uses nearly twice as
many parameters in classifier. And also this is interesting, since this,
as well as the high result of Sum-fusion and Multiplication-fusion,
suggest that simply summing or multiplication the feature maps is
already a good fusion technique and learning a randomly initialized
combination does not lead to significantly different/better results.

4.2.3 Ablation studies. To evaluate the contribution of each
module in our model, we break down our network with different
combinations. The results are shown in Table 2. We adopt a 3-layer
classifier (one pooling layer and two fully-connected layers) for the
given frame-level dataset; and a variant network which considers
either of Attention or Fusion. We apply element-wise multiplication

Table 2: Comparison of action and scene classification accu-
racy(mAP) on the CoVieW dataset. Accuracies are measured
with using only classifier, attention without fusion, fusion
without attention and attention and fusion both.

Attention Fusion Action(mAP) Scene(mAP)

- - 78.8 93.4
v - 82.3 94.57
- v 81.78 94.23
v v 84.8 96.07

method to fusion networks, which shows the best performance
compared with other fusion methods. We can see that Attention
has more contribution to the improved performance than Fusion.
It indicates that though correlation between the action and the
scene information is important, the attention feature has significant
discriminative information which is very useful for classification.
All results achieves significantly better results on the scene clas-
sification since the number of classes much more in the action.
Considering the attention and combining two informations offers
better performance.

5 CONCLUSION

We proposed a framework that recognize both human actions and
scene using the temporal attention and feature fusion of untrimmed
video based on deep neural networks. The experimental results
on the CoVieW18 dataset demonstrated the effectiveness of the
proposed temporal attention module and feature fusion module.
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